1. Calcule las dimensiones de A y B respectivamente, en la siguiente ecuación dimensionalmente correcta
d = A t + 0,5 B t2
Donde d es distancia y t es tiempo.
A) L T 1 ; L T 2
B) L T 2 ; L 2 T 2
C) L T 2 ; L T 3
D) L 2 T 1 ; L 2 T 2
E) L 2 T 3 ; L T 2
RESOLUCIÓN
Si la ecuación es dimensionalmente correcta, entonces cada uno de los términos de la ecuación debe tener las mismas dimensiones. Luego, la ecuación dimensional se expresa:
[ e ] = [A] [t] = [0,5] [ B ] [ t ]2
Nótese que todos los términos han sido igualados y ahora se reemplaza las dimensiones de las cantidades físicas conocidas.
L = [ A ] T = (1) [ B ] T 2
Recuerde: [0,5 ] = (1).
Finalmente se deduce:
[ A ] = L T 1 ; [ B ] = = L T 2
RPTA.: A
2. La energía en el S.I., se mide en joules (J). Si la energía cinética (Ec) de un cuerpo está definida mediante:
EC = 0,5 mv 2
Donde m es masa y v es el módulo de la velocidad.
¿Cuál de los siguientes grupos de unidades equivale al Joule?
A) kg m2 s1
B) kg m 1 s 2
C) kg m 2 s 2
D) kg m2 s 2
E) kg m3 s 2
RESOLUCIÓN
Escribimos la ecuación dimensional de la energía cinética y reemplazamos las dimensiones de las cantidades físicas conocidas.
[ EC ] = [ 0,5 ] [ m ] [ v ] 2
[ EC ] = (1) M ( LT 2 ) 2
[ EC ] = M L 2 T 2
Reemplazamos las unidades de cada magnitud fundamental y encontramos el joule (J) expresado en términos de las unidades fundamentales.
Joule = J = kgm 2 s 2
RPTA.: D
3. Un grupo de unidades que representa la medición de la potencia es:
A) lb pie3 s 3
B) lb pie2 s2
C) kg m3 s 2
D) lb pie2 s 3
E) kg m3 s 2
RESOLUCIÓN:
lb pie 2 s 3
RPTA.: D
4. El número de Reynolds es un valor adimensional el cual nos indica si un flujo es turbulento o laminar, dentro de un tubo. El número de Reynolds “R”, se calcula mediante la siguiente ecuación:
R = V d /
Donde es la densidad, V la rapidez promedio y d el diámetro del tubo. Determinar las dimensiones de la viscosidad .
A) M2 L1 T 1
B) M3 L1 T 1
C) M L1 T 1
D) M L2 T 1
E) M L1 T 2
RESOLUCIÓN
Escribimos la ecuación dimensional:
[R] [] = [] [V] [d]
Como R es adimensional lo reemplazamos por la unidad
(1) [] = ML3 LT 1 L
[] = ML1T 1
RPTA.: C
5. La densidad (D) de un sólido según la temperatura, está dada por la siguiente ecuación :
Donde M es la masa y ∆T la variación de la temperatura. Determinar las dimensiones de B.
A) L3 1 B) L3 1
C) L 3 D) M3 1 T 1
E) M L1 1
RESOLUCIÓN
[D] ( [A] + [B][∆T] ) = [M]
[D] [A] = [D] [B] [∆T] = [M]
ML 3 [A] = ML 3 [B] = M
[B] = L3 1
RPTA.: B
6. Un objeto que realiza un movimiento periódico tiene la siguiente ecuación:
X =A e t cos ( t + )
Donde X es la posición, t el tiempo y e 2,82. Determine la dimensión de [A ].
A) L T 2 B) L T 1 C) L2 T 2
D) L 2 T 2 E) L 2 T 1
RESOLUCIÓN
Escribimos la ecuación dimensional y resolvemos:
[X] = [A] [e ] t [cos (t + )]
[X] = [A] (1) (1)
L = [A]
Los exponentes son adimensionales, por lo tanto dimensionalmente se igualan a la unidad:
[exponente] = 1
[t ] = 1 [1] [] [t] = 1
(1) [] T = 1
[] = T 1
Los ángulos son adimensionales:
[ángulo] = 1
[(t + )] = 1 [] [t] = [] = 1
[]T = [] = 1
[] = T 1 ; [] = 1
Reemplazando las dimensiones encontradas, tenemos:
[A ] = (L)( T 1 )(T 1) = L T 2
RPTA.: A
7. En cierto experimento, se mide el tiempo que demora un péndulo simple en dar una oscilación. Se observa que este tiempo depende de la aceleración de la gravedad y de la longitud de la cuerda. La ecuación empírica del periodo en función de estas dos últimas cantidades es:
A) 6,28 g1/2 L1/2
B) 4,22 g1/3 L1/2
C) 3,12 g1/5 L1/3
D) 1,24 g1/3 L1/3
E) 3,14 g2 L1/2
RESOLUCIÓN:
Las tres cantidades relacionadas son:
t = tiempo
g = aceleración de la gravedad.
L = longitud de la cuerda.
Se elabora una relación entre las cantidades físicas:
t = k g x L y
Donde:
k: es un número adimensional, denominado constante de proporcionalidad.
x e y: son exponentes de valor desconocido, que determinaremos para que la ecuación empírica quede determinada.
Se escribe la ecuación dimensional y se reemplaza las dimensiones de las cantidades conocidas.
[ t ] = [ k ] [ g ] x [ L ] y
T = (1) ( LT 2 ) x ( L ) y
T = L x + y T 2 x
Comparando los exponentes de las dimensiones a cada lado de la ecuación, deducimos:
2x = 1 x = 1/2
x + y = 0 y = +1/2
Finalmente la ecuación empírica es:
t = kg 1/2 L1/2 =
RPTA.: A
8. Con respecto a la gráfica, determine la dimensión del área sombreada.
A) M 2 L T 1
B) M L T 1
C) M L2 T 1
D) M L2 T 1
E) L2 T 2
RESOLUCIÓN:
La dimensión del área comprendida por la gráfica F – t es:
[área (F–t)] = [F] [t]/2=(MLT2 )(T)/1
[área (F–t)] = ML T 1
RPTA.: B
9. Con respecto a la gráfica A vs B mostrada en la figura, determine la dimensión de la pendiente de la recta. Donde A es masa y B es volumen.
A) M L1
B) M L2
C) M 1 L1
D) M T 3
E) M L3
RESOLUCIÓN:
La dimensión de la pendiente de la recta es:
[pendiente (A – B) ] =
[pendiente (A–B)] =
[pendiente (A–B)]
RPTA.: E
10. La diferencia de potencial eléctrico “ ” entre dos puntos de un material está dada por:
Donde W es el trabajo necesario para trasladar las cargas entre dichos puntos y q es la cantidad de carga neta que se traslada. Determine las dimensiones de la diferencia de potencial eléctrico.
A) M L 1 T 3 I 1
B) M L 2 T 3 I 1
C) M1 L1 T 3 I 1
D) M T 3 I 1
E) M L 3 I 1
RESOLUCIÓN:
Escribimos la ecuación dimensional y reemplazamos las dimensiones del trabajo y la carga eléctrica:
RPTA.: B
La unidad de la diferencia de potencial o voltaje es el voltio (V).
11. La capacitancia (C) de un capacitor es la división entre el valor de la carga (Q) que almacena una de sus armaduras y la diferencia de potencial (V) entre las armaduras del capacitor. Determine las dimensiones de la capacitancia.
A) M1 L2 T 4 I1
B) M L 2 T 3 I1
C) M1 L1 T 3 I1
D) M T 3 I 1
E) M 1 L2 T4 I2
RESOLUCIÓN:
Escribimos la ecuación dimensional y reemplazamos las dimensiones de la carga eléctrica y de la diferencia de potencial:
RPTA.: E
La unidad de la capacidad eléctrica es el faradio (F).
12. Determine el módulo de la resultante de los vectores , y .
A) 12 u B) 14 u C) 24 u
D) 13 u E) 15 u
RESOLUCIÓN
Sumamos los vectores , usando el método del paralelogramo:
Calculamos el modulo de usando la fórmula:
Un análisis geométrico adicional nos lleva a la conclusión de que el vector biseca al ángulo de 60°, esto es por que los vectores que se han sumado tienen igual módulo. Por lo tanto el ángulo que forman entre si el vector y es 90°.
Sumamos ahora y con el método del paralelogramo.
Calculamos el modulo de usando la fórmula:
RPTA.: A
13. Dos vectores y tienen módulos de 10 u y 6 u respectivamente. Determinar en que intervalo se encuentra el módulo de la resultante que se pueden obtener con estos dos vectores.
RESOLUCIÓN
Calculamos el módulo de la resultante máxima y mínima de estos dos vectores, cuando formen 0° y 180° entre sí respectivamente.
;
El intervalo entre los cuales se encontrará la resultante de estos vectores de acuerdo al ángulo que formen entre si será:
RPTA.: E
14. Dos vectores tienen una resultante máxima cuyo módulo es 14 u y una resultante mínima cuyo módulo es 2u. Determine el módulo de la resultante de los vectores cuando son perpendiculares entre si.
A) 12 u B) 14 u C) 20 u
D) 10 u E) 15 u
RESOLUCIÓN
Supongamos que sean dos vectores y , entonces según lo afirmado en el problema.
Resolvemos y encontramos los módulos de los vectores y .
Calculamos el módulo de los vectores y usando la fórmula [1], cuando los vectores son perpendiculares ( = 90°).
RPTA.: D
15. Sea el vector de módulo 5 u que forma 63° con respecto al eje +x, y las rectas L1 y L2 que forman ángulos de 137° y 10° con respecto al eje +x. Determine los módulos de las componentes del vector sobre L1 y L2.
A) 4 u y 6 u B) 8 u y 5 u
C) 5 u y 6 u D) 4 u y 5 u
E) 4 u y 3 u
RESOLUCIÓN
Dibujamos el vector y las rectas L1 y L2, Construimos un paralelogramo y trazamos los componentes de .
Calculamos el módulo de las componentes usando ley de senos y obtenemos:
A1 = 5cm Y A2 = 6cm
RPTA.: C
16. Los vectores están ubicados en el sistema ortogonal, tal como se muestra en la figura. Determine la resultante de los vectores.
RESOLUCIÓN
Descomponemos rectangularmente los vectores y calculamos los módulos de las componentes.
Calculamos la resultante en cada eje usando vectores unitarios.
RPTA.: A
17. Los vectores están ubicados en el sistema ortogonal, tal como se muestra en la figura. Determine la resultante de los vectores.
A) 4 u 7º
B) 1 u 8 º
C) 4 u 0 º
D) 1 u 0 º
E) 1 u 10 º
RESOLUCIÓN
Los ángulos mostrados no corresponden a triángulos notables. Si los vectores son girados 7° en sentido horario, obtenemos que los vectores forman ángulos notables con respecto a los ejes ortogonales.
Descomponemos los vectores y calculamos los componentes de cada vector.
Calculamos la resultante
El módulo de la resultante es: , girando el vector 7° en sentido antihorario (para restituir el ángulo anteriormente girado), la dirección y el sentido del vector resultante será: 7° con respecto al eje +x.
RPTA.: A
18. Sean los vectores y . Determine el módulo de
A) 42 u B) 12 u C) 63 u
D) 26 u E) 98 u
RESOLUCIÓN
Calculamos :
Calculemos el módulo de la resultante.
RPTA.: C
19. Calcule el módulo de la resultante de los vectores que se muestran en la figura.
A) 8 u
B) 10 u
C) 6 u
D) 5 u
E) 9 u
RESOLUCIÓN
Rx = 8 u
Ry = 6 u
Calculamos la resultante aplicando Pitágoras:
R = 10 u
RPTA.: B
20. Determine el módulo del vector tal que la resultante de los vectores mostrados en la figura sea vertical.
(B = 25u)
A) 40 u
B) 20 u
C) 60 u
D) 30 u
E) 90 u
RESOLUCIÓN
Descomponemos y sumamos:
RPTA.: D